GNSS Patch Antenna Module Design Guide

GNSS Module Series

Rev. GNSS_Patch_Antenna_Module_Design_Guide_V1.1

Date: 2016-02-24
Our aim is to provide customers with timely and comprehensive service. For any assistance, please contact our company headquarters:

Quectel Wireless Solutions Co., Ltd.
Office 501, Building 13, No.99, Tianzhou Road, Shanghai, China, 200233
Tel: +86 21 5108 6236
Mail: info@quectel.com

Or our local office, for more information, please visit:
http://www.quectel.com/support/salesupport.aspx

For technical support, to report documentation errors, please visit:
http://www.quectel.com/support/techsupport.aspx
Or Email: Support@quectel.com

GENERAL NOTES
QUECTEL OFFERS THIS INFORMATION AS A SERVICE TO ITS CUSTOMERS. THE INFORMATION PROVIDED IS BASED UPON CUSTOMERS’ REQUIREMENTS. QUECTEL MAKES EVERY EFFORT TO ENSURE THE QUALITY OF THE INFORMATION IT MAKES AVAILABLE. QUECTEL DOES NOT MAKE ANY WARRANTY AS TO THE INFORMATION CONTAINED HEREIN, AND DOES NOT ACCEPT ANY LIABILITY FOR ANY INJURY, LOSS OR DAMAGE OF ANY KIND INCURRED BY USE OF OR RELIANCE UPON THE INFORMATION. ALL INFORMATION SUPPLIED HEREIN IS SUBJECT TO CHANGE WITHOUT PRIOR NOTICE.

COPYRIGHT
THIS INFORMATION CONTAINED HERE IS PROPRIETARY TECHNICAL INFORMATION OF QUECTEL CO., LTD. TRANSMITTABLE, REPRODUCTION, DISSEMINATION AND EDITING OF THIS DOCUMENT AS WELL AS UTILIZATION OF THIS CONTENTS ARE FORBIDDEN WITHOUT PERMISSION. OFFENDERS WILL BE HELD LIABLE FOR PAYMENT OF DAMAGES. ALL RIGHTS ARE RESERVED IN THE EVENT OF A PATENT GRANT OR REGISTRATION OF A UTILITY MODEL OR DESIGN.

Copyright © Quectel Wireless Solutions Co., Ltd. 2016. All rights reserved.
About the Document

History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Author</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>2015-12-22</td>
<td>Neil WU</td>
<td>Initial</td>
</tr>
<tr>
<td>1.1</td>
<td>2016-02-24</td>
<td>Neil WU</td>
<td>Updated the description of design recommendations</td>
</tr>
</tbody>
</table>
Contents

About the Document ... 2
Contents ... 3
Table Index ... 4
Figure Index ... 5
1 Introduction .. 6
2 Design Guidelines .. 7
 2.1. Design Recommendations .. 7
 2.2. Performance Test in Different Conditions .. 10
 2.2.1. The Influence of the Ground Plane ... 10
 2.2.2. The Influence of the Placement ... 11
3 Performance Analysis ... 13
Table Index

TABLE 1: THE PERFORMANCE COMPARISON FOR DIFFERENT SIZES OF GROUND PLANE11
TABLE 2: THE PERFORMANCE COMPARISON FOR DIFFERENT PLACEMENTS 12
Figure Index

FIGURE 1: RECOMMENDED DISTANCE BETWEEN MODULE AND THE EDGE OF MOTHER BOARD...... 7
FIGURE 2: RECOMMENDED KEEPOUT AREA ON MOTHER BOARD .. 8
FIGURE 3: RECOMMENDED GROUND PLANE .. 8
FIGURE 4: RECOMMENDED DISTANCE BETWEEN GNSS MODULE AND TALL METAL COMPONENTS.. 9
FIGURE 5: RECOMMENDED PLACEMENT OF GNSS MODULE .. 9
FIGURE 6: RECOMMENDED PLACEMENT OF GNSS MODULE WITH THE RF SYSTEM 10
FIGURE 7: TEST BOARD OF GROUND PLANE .. 10
FIGURE 8: TEST BOARD OF PLACEMENT .. 11
1 Introduction

GNSS module with an embedded patch antenna makes great demands on the surroundings, this document mainly introduces module design rules and tests to achieve a better performance.

This document is applicable to the following GNSS modules with the embedded patch antenna:

- L80 module
- L80-R module
- L86 module
2 Design Guidelines

When the module is integrated into the customer’s products, it is recommended to comply with the following rules for an optimal performance.

2.1. Design Recommendations

The radiation characteristic of antenna depends on various factors, such as the size, shape of the PCB and the dielectric constant of components nearby. It is recommended to follow the rules listed below.

- Keep the module at least 5mm away from the nearest edge of the mother board, that is, it will be better to be placed in the center of the mother board.

![Figure 1: Recommended Distance between Module and the Edge of Mother Board](image-url)
The position on the mother board corresponding to the feed point of the patch antenna should be kept out on each layer, and the diameter of the keepout area should not be less than 2.5mm.

Make sure the antenna points to the sky.

The performance of embedded patch antenna depends on the actual size of the ground plane around the module, it is recommended to design a 30mm×30mm ground plane as shown below. Meanwhile, do not put any components especially tall components in the areas whenever possible. (Interfering vias is not allowed either).
- Keep the patch antenna at least 10mm away from other tall metal components. Otherwise, the antenna performance will be affected.

Figure 4: Recommended Distance between GNSS Module and Tall Metal Components

- Make sure the microcontroller, crystal, LCD, camera and other high speed components and interfaces are placed on the opposite side of the module, and keep them away from the module as far as possible, such as in diagonal position of the mother board.

Figure 5: Recommended Placement of GNSS Module

- Make sure interfering signals (USB, LCD, Camera, Crystal, etc.) are in inner layer and shielded by ground plane, and keep them and their vias far away from the module.
- Make sure RF system such as BT/WIFI/GSM is on the opposite side of the module, and keep them away from the module as far as possible, such as in diagonal position of the board.
2.2. Performance Test in Different Conditions

2.2.1. The Influence of the Ground Plane

The performance of embedded patch antenna depends on the actual size of the ground plane around the antenna on the main PCB.
Table 1: The Performance Comparison for Different Sizes of Ground Plane

<table>
<thead>
<tr>
<th>Actual Size of Ground Plane</th>
<th>Efficiency (%)</th>
<th>Peak Gain (dBi)</th>
<th>Bandwidth (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>70*70mm</td>
<td>84.99</td>
<td>4.9</td>
<td>19.76</td>
</tr>
<tr>
<td>50*50mm</td>
<td>78.29</td>
<td>3.31</td>
<td>15.19</td>
</tr>
<tr>
<td>30*30mm</td>
<td>68.19</td>
<td>2.25</td>
<td>8.78</td>
</tr>
</tbody>
</table>

The testing data comes from the manufacturer of the patch antenna. They made a comparison test for the antenna on the different size of PCB which is fully covered with ground copper. From the data, it can be concluded that under the same condition except the size of the ground plane, the bigger the size of the ground plane is, the wider the bandwidth is and higher the efficiency is.

NOTE

1. The frequency of signal which is provided for the patch antenna is 1.57542GHz.
2. The size of the ground plane is related to the frequency, it is not recommended to exceed $\lambda/2$.
3. The test object is just the antenna, not the module.

2.2.2. The Influence of the Placement

The placement of the antenna on the mother board can also affect the performance.
Table 2: The Performance Comparison for Different Placements

<table>
<thead>
<tr>
<th>Placement of Module</th>
<th>Efficiency (%)</th>
<th>Peak Gain (dBi)</th>
<th>Bandwidth (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center</td>
<td>68.19</td>
<td>2.25</td>
<td>8.78</td>
</tr>
<tr>
<td>Edge</td>
<td>60.23</td>
<td>2.01</td>
<td>8.57</td>
</tr>
<tr>
<td>Corner</td>
<td>55.63</td>
<td>1.92</td>
<td>8.08</td>
</tr>
</tbody>
</table>

The testing data comes from the manufacturer of the patch antenna. They made a comparison test for the antenna on the different position of PCB which is fully covered with ground copper. From the data, it can be concluded that under the same condition except the distance between the antenna and the center of the ground plane, the closer the distance between the antenna and the center of the ground plane is, the wider the bandwidth is and higher the efficiency is.

NOTES

1. The frequency of signal which is provided for the patch antenna is 1.57542GHz.
2. The test object is just the antenna, not the module.
3 Performance Analysis

This section introduces how to analyze the antenna performance after customers’ devices have integrated Quectel GNSS modules.

- In the open sky, make a contrast test on device and EVB, and detect whether the CN value of the device is similar to the EVB, then save the log. Make sure the device and the EVB are in the same condition including time and place.
- Under the half view of the sky, make a contrast test on device and EVB, and detect whether the CN value of the device is similar to the EVB, then save the log. Make sure the device and the EVB are in the same condition including time and place.
- Generate a GPS signal whose power is -130dbm by the signal generator, make a contrast test on the device and EVB, and detect whether the CN value of the device is similar to the EVB, then save the log.
- Detect whether GPS performance of the device is weakened by the jamming from the microcontroller. Make a comparison test with and without the microcontroller and contrast the CN values to determine whether there is interference.
- If the performance is still not good, it is recommended to provide the debug log to Quectel Technical Support.