
Local interconnect

Main Features:

 Single master with multiple slaves concept.

 Self Synchronization.

 Single wire.

 Low baud rate.

 Low speed application (Less than 20kps).

 Max 40 m wire length

 The LIN is a SCI/UART-based serial

o The LIN protocol is byte oriented.

o data is sent one byte at a time.

o One byte field contains a start bit (dominant), 8 data bits and a stop bit

(recessive).

o The data bits are sent LSB first.

o In automotive application, the LIN bus is connected between

• smart sensor

• actuators

• Electronic Control Unit (ECU)

LIN characteristics :

o Broadcast type serial network.

o Single wire 12V bus connection.

o Has the synchronization mechanism that allows the clock

recovery by slave nodes.

o Only the master node will be using the oscillating device.

o Nodes can be added to the LIN network without requiring

HW/SW changes in other slave nodes.

LIN characteristics :

LIN History:

o In 1996, Volvo and Volcano Communication Technologies

(VCT) developed a UART based protocol for the Volvo S80

series, called Volcano Lite.

This protocol was an integral part of the vehicle communication system.

o In 1997, Motorola joined Volvo and VCT in improving the

Volcano Lite protocol .

• Self-synchronization of the slave

• Form an open standard

o In December 1998 , Audi, BMW,

DaimlerChrysler and VW joined

the activities and formed to set up

the LIN communication protocol.

o September , LIN API specification

draft was released (Rev. 0.1).

o In November 2002, LIN 1.3 was

released.

o The latest version LIN 2.0 released

in 2003.

Daimler-
Chrysler

AUDI
VW

Volvo

BMW

LIN

Spec

VCT

LIN History:

o The LIN bus is a single master device and multi slave devices.

o The master device contains both a master task and a slave task.

o Each slave device contains only a slave task.

o Communication over the LIN bus is controlled by master task.

Concept of Operation

0 to 8 data fields checksum

message response

synch break

 13 bit

synch field identifier

message header

Synchronisation

frame

Synchronisation field

Identifier byte

Message

LIN Message Frame

o The basic unit of transfer on the LIN bus is the frame.

o Divided into a header and a response.

synch break

 13 bit

synch field identifier

message header

Synchronisation

frame

Synchronisation field

Identifier

 byte

LIN Message Frame

o Control over the whole Bus.

o Controls which message at what

time is to be transferred over the

bus.

o Send Header:

Sync Break, Sync Byte ,ID-Field.

Master Task:

synch break

 13 bit

synch field identifier

message header

Synchronisation

frame

Synchronisation field

Identifier

 byte

LIN Message Frame

Master Task:

o Error handling.

• monitors Data Bytes and Check Byte,
and evaluates them on consistence

o Receives Wakeup Break from slave

nodes when the bus is inactive.

o Defines the transmission speed.

o Switching slave nodes to

sleep/wake up mode.

LIN Message Frame

0 to 8 data fields checksum

message response

Message

o One of 2-16 Members on the Bus.

o Receives or transmits Data when

appropriate ID is sent .

o Slave snoops for ID.

Slave Task:

LIN Message Frame

0 to 8 data fields checksum

message response

Message

Slave Task:

o According to ID, slave determines:

• receive data, transmit data ,do
nothing.

o When transmitting :

• sends 1, 2, 4, or 8 Data Bytes + Check-
Byte

o The node serving as a master can be

slave.

Master and Slave Communication

data byte data byte checksum

synch field identifier synch break
Slave Node

Slave Task Trans

Slave Task Rec

Master Node

LIN Master Task

Slave Task Trans

Slave Task Rec q
u

a
rt

z

Master and Slave Communication

Master Node

LIN Master Task

Slave Task Trans

Slave Task Rec q
u

a
rt

z

Slave Node A

Slave Task Trans

Slave Task Rec

Slave Node B

Slave Task Trans

Slave Task Rec

Master and Slave Communication

Slave Node A

Slave Task Trans

Slave Task Rec

Slave Node B

Slave Task Trans

Slave Task Rec

Master Node

LIN Master Task

Slave Task Trans

Slave Task Rec q
u

a
rt

z

Master and Slave Communication

Structure of a Byte field:

o The LSB of the data is sent first and the MSB last.

o The start bit is encoded as a bit with value zero (dominant)

&the stop bit is encoded as a bit with value one (recessive).

Frame Structure

Frame Structure

Break

o The break symbol is used to signal the beginning of a new

frame.

o A break is always generated by the master task and it shall be

at least 13 bits of dominant value, including the start bit,

followed by a break delimiter

o Synch break ends with a “break delimiter” which should be at

least one recessive bit.

Synch Byte

o Synch is a byte field with the data value 0x55.

o A slave task shall always be able to detect the break/synch

symbol sequence.

o Synch byte is sent to decide the time between two falling edges

and thereby determine the transmission rate.

o The bit pattern is 0x55 (01010101, max number of edges).

Frame Structure

Frame Structure

Protected Identifier
1. Identifier:

o Six bits are reserved for the identifier (ID).

o Values in the range 0 to 63 can be used.

o The identifiers are split in four categories:

• Values 0 to 59 (0x3b) are used for signal• carrying frames.

• 60 (0x3c) and 61 (0x3d) are used to carry diagnostic data.

• 62 (0x3e) is reserved for user• defined extensions.

• 63 (0x3f) is reserved for future protocol enhancements.

Frame Structure

Protected Identifier
1. Identifier:

o Contains information about sender and receiver and the number of

bytes which is expected in the response.

Frame Structure

Protected Identifier
2. Parity:

o The parity is calculated on the identifier bits.

o P0 = ID0 .ID1 .ID2 .ID4

o P1 = •~(ID1 .ID3 .ID4 .ID5)

Frame Structure

Data

o A frame carries between one and eight bytes of data

o A data byte is transmitted in a byte field

o The data bytes field is transmitted by the slave task in the

response.

o Can be 2, 4 or 8 bytes long depending on the two MSB (Most

Significant Byte) of the identifier sent by the master.

o This ability came with LIN 2.0, older versions have a static

length of 8 bytes.

Frame Structure

Checksum:

o The LIN bus defines the use of one of two checksum

algorithms to calculate the value in the eight-bit checksum

field:

• Classic checksum is calculated by summing the data bytes

alone.(V1.3)

• Enhanced checksum is calculated by summing the data

bytes and the protected ID.(V2.0)

Frame Structure

LIN Bus Timing

tHeader_Nom = (NSync_Field + NSync_Byte + NPID_Byte) • tBit = 34 • tBit

 tResponse_Nom = 10 • (NData + 1) • tBit tFrame_Nom = tHeader_Nom + tResponse_Nom

LIN Bus Timing

o A time reserve of up to 40% is given for transmission of a LIN
message

tFrame_Max = tHeader_Max + tResponse_Max = 1.4 • tFrame_Nom

Schedule Table

o The master task (in the master node) transmits frame headers

based on a schedule table.

o The schedule table specifies the identifiers for each header and

the interval between the start of a frame and the start of the

following frame.

o The master application may use different schedule tables and

select among them.

Schedule Table

o The LIN Schedule is organized in Mini Slots

 (tMini Slot = tTime-Base)

o An adequate number of Mini Slots must be

provided to guarantee transmission of a LIN

message

1.Unconditional Frame

o Characterized in that there is exactly one sender of the Message

Response.

Frame Types

2.Event-triggered frame

o Confirm the availability of an update to the value of a signal.

o Only slave nodes with updated signal values transmit

responses to the header.

o The transmission of responses by several slave nodes may lead

to a collision.

o When a collision occurs:

the master node sends requests for the confirmation of signal

values to all of the slave nodes via an unconditional frame.

Frame Types

2.Event-triggered frame

Frame Types

2.Event-triggered frame

Frame Types

o A typical use for the event triggered frame is to monitor the

door knobs in a four door central locking system.

• By using an event triggered frame to poll all four doors the

system shows good response times.

while still minimizing the bus load.

• In the rare occasion that multiple passengers press a knob

each

the system will not lose any of the pushes, but it will

take some additional time.

2.Event-triggered frame
A schedule table contains one event-triggered frame (ID=0x10).

Frame Types

3.Sporadic frames

o Used to inform all relevant slave nodes of the updating of a

signal value.

o Managed by the master node.

o Only the master node sends out a response to the header.

Frame Types

4.User-defined frames

o have an ID of 62.

o carry any type of information.

Frame Types

5.Diagnostic frames

o Eight data bytes in length

o Carry diagnostic or configuration data.

o Their IDs are :

• 60 for a master request frame.
• 61 for a slave response frame.

Frame Types

Frame Types

o The Diagnostic Schedule is used for diagnostics.

o It must contain two frame slots:

• The Master Request Frame (Diagnostic Request)

• LIN Master sends both the Message Header and the Message

Response.

• The Slave Response Frame (Diagnostic Response)

• LIN Master sends the Message Header, and a LIN Slave sends the

Message Response.

o The number of repeats depends on the diagnostic

implementation itself.

Diagnostic

o A diagnostic frame is called a PDU (Packet Data Unit) :

• Starts with a NAD :

 Addresses a certain node.

 The value ranges 1-127, 0 is reserved,128-255 are for free

usage.

• Follows a PCI (Protocol Control Information)

 Handles the flow control.

• A Service Identifier (SID) specifies the request and which

data bytes to follow.

Diagnostic

o If the PCI-type is a Single Frame (SF) the whole diagnostic

request command will fit into a single PDU.

Diagnostic

o If the PCI-type is First Frame (FF) the next byte (LEN) will

describe the number of bytes to come.

o The data bytes that do not fit into the first frame will be sent in

the following frames with the PCI-type of Continuation Frames

(CF).

Diagnostic

LIN Master sends both the Message Header and the Message Response.

Diagnostic

LIN Master sends the Message Header, and a LIN Slave sends the Message

Response.

Diagnostic

o Methods for diagnostics:

1. Signal based diagnostic.

2. User defined diagnostic.

3. Diagnostic transport layer.

Diagnostic

1. Signal based diagnostic:

o The simplest method and uses standard signals in ordinary frames

which represent:

 Low overhead in slave nodes.

A standardized concept.

 Static with no flexibility.

2. User defined diagnostic:

o designed to fit the needs for a specific device.

o uses NADs in the range 128-255.

Diagnostic

Methods for diagnostics

3. Diagnostic transport layer:

o Useful for a LIN network which is built on a CAN-based

system where ISO diagnostics is used.

o NADs 1-127 are used.

o This method represents:

Low load on the master device.

Provides ISO diagnostics for LIN slaves.

 Intended for more complex and powerful LIN nodes.

Diagnostic

Methods for diagnostics

Physical properties

UART
Rx

Tx

master: 1k

slave: 30k

Bus

Example capacitances

master: 2.2nF

slave: 220pF

o The LIN-bus transceiver is a modified version of the transceiver

used by the ISO 9141 standard.

o The bus is bidirectional and connected to the node transceiver,

o Also via a termination resistor and a diode to Vbat .

Physical properties

o On the bus:

• Logical low level (0) is dominant

• Logical high level (1) is recessive.

o Voltage supply (Vsup) for an ECU should be between 7 V and

18 V.
VBAT

8...18V

GND

recessive

logic ‘1’

dominant

logic ‘0’

60%

40%

Bus Voltage

Time

controlled slope

~2V/µs

o Each LIN Slave monitors its operating state and creates a status

report.

o The status report is sent periodically to the LIN Master (LIN 2.0).

o Monitoring by error detection mechanisms

• Parity check

• Checksum

o LIN messages detected as corrupt are rejected

o Error handling is not part of the LIN specification and must be

defined separately

LIN Error Handling

LIN Power Management (V2.0)

o It contains "wake up" and "go-to sleep".

o All the slave nodes in an active LIN cluster can be changed

into sleep mode by:

 Sending a diagnostic master request frame with the first

data byte equal to zero.

 This special use of a diagnostic frame is called a go-to-

sleep-command.

o Slave nodes can automatically enter a sleep mode if the LIN

bus is inactive for more than 4 seconds.

o Any node in a sleeping LIN cluster can send a request for wake

up cluster.

o wakeup request is issued by forcing the bus dominant for 250 μs

to 5 ms.

o Every slave node can detect the wake-up request (a dominant

pulse longer than 150 ms) and be ready to listen to bus

commands within 100 ms, measured from the ending edge of

the dominant pulse.

LIN Power Management (V2.0)

o The master node can wake up .

o When the slave nodes are ready, start sending frame headers to

find out the cause of the wake up.

o If the master does not issue headers within 150 ms after

receiving the first wakeup request, then the slave requesting

wakeup may try issuing a second wakeup request (and waiting

for another 150 ms).

LIN Power Management (V2.0)

o If the master still does not respond, the slave issue the wakeup

request and wait 150 ms a third time.

o If there is still no response, the slave must wait for 1.5 seconds

before issuing a fourth wakeup request.

LIN Power Management (V2.0)

LIN Workflow

LIN Workflow

Software

Level

Hardware

Level

Tools ECU

(LIN relevant

functions only)

Operating System

Bus Transceiver

Application

Communication Manager

Vehicle Network

LIN API Specification

LIN Protocol Specification

LIN Physical Layer Spec.

LIN Config. Language

Signal Database

Manager (SDM/L)

Bus Analyzer

(LINSpector)

Network Configuration

Generator (LCFG)

LIN Physical Layer Spec.

LIN Config Language

LIN Conformance Test Specification

LIN Recommended Use of Messages and Identifiers

o The LIN bus connects a single master device (node) and one or

more slave devices (nodes) together in a LIN cluster.

o The behavior of each node is described by its own node

capability file(NCF).

o The node capability files are inputs to a system-defining tool

o It generates a LIN description file (LDF) that describes the

behavior of the entire cluster.

o The LDF is parsed by a system generator to automatically

generate the specified behavior in the desired nodes.

LIN Workflow

LIN Workflow

o A node interfaces to the physical

bus wire using a frame

transceiver.

o The frames are not accessed

directly by the application.

o A signal based interaction layer is

added in between.

o A diagnostic interface exist

between the application and the

frame handler, as depicted below.

References

www.vector.com

ESC automotive sessions

http://www.ixxat.com/introduction_lin_en.html

http://www.kvaser.com/zh/about-can/related-protocols-and-standards/46.html

http://www.eeherald.com/section/design-guide/esmod10.html

http://www.ixxat.com/introduction_lin_en.html
http://www.ixxat.com/introduction_lin_en.html
http://www.ixxat.com/introduction_lin_en.html
http://www.ixxat.com/introduction_lin_en.html
http://www.ixxat.com/introduction_lin_en.html
http://www.ixxat.com/introduction_lin_en.html
http://www.ixxat.com/introduction_lin_en.html
http://www.kvaser.com/zh/about-can/related-protocols-and-standards/46.html
http://www.kvaser.com/zh/about-can/related-protocols-and-standards/46.html
http://www.kvaser.com/zh/about-can/related-protocols-and-standards/46.html
http://www.kvaser.com/zh/about-can/related-protocols-and-standards/46.html
http://www.kvaser.com/zh/about-can/related-protocols-and-standards/46.html
http://www.kvaser.com/zh/about-can/related-protocols-and-standards/46.html
http://www.kvaser.com/zh/about-can/related-protocols-and-standards/46.html
http://www.kvaser.com/zh/about-can/related-protocols-and-standards/46.html
http://www.kvaser.com/zh/about-can/related-protocols-and-standards/46.html
http://www.kvaser.com/zh/about-can/related-protocols-and-standards/46.html
http://www.kvaser.com/zh/about-can/related-protocols-and-standards/46.html
http://www.kvaser.com/zh/about-can/related-protocols-and-standards/46.html
http://www.eeherald.com/section/design-guide/esmod10.html
http://www.eeherald.com/section/design-guide/esmod10.html
http://www.eeherald.com/section/design-guide/esmod10.html
http://www.eeherald.com/section/design-guide/esmod10.html
http://www.eeherald.com/section/design-guide/esmod10.html
http://www.eeherald.com/section/design-guide/esmod10.html

